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SONIC RADIATION FROM A CIRCULAR PISTON
WITH IMPULSE EXCITATION

By Leon Bess
Electronics Research Center

SUMMARY

Closed analytic expressions have been derived for the sonic
pressure as a function of space and time when a circular piston
is excited so that its velocity varies with time as a Dirac delta
function. These expressions are valid not only for the far field
but also for the near field. Moreover a number of typical plots
of the sonic pressure versus time for various special points have
been made using the results of the calculations. The basis of
the method of calculation is the approximation of the circular
piston by an array of very small spheres uniformly distributed
over the area of the piston. Each of these spheres are assumed
to have their radius increase as a step function in time at the
instant of excitation. The sonic field for such an excited
sphere is well known and is relatively simple in form.

* % % % % * %

The sonic field for a circular disk with impulse excitation
has been solved for distances large compared to the disk radius
(ref. 1). For small distances and distances comparable to the
radius, the evaluation becomes too complex when conventional
methods are employed.

In the work to be reported here, a different approach to the
solution has been taken which allows its evaluation for both the
near and far field without too much difficulty. The first step
in attaining the solution is to illustrate the configuration of
the geometric system and this is done in Figure 1. As can be
seen, the flat excitor disk lies in the XY plane with its center
at the origin. The field measurement point, M, lies in the YZ
plane, and has the coordinates (y,z). It is assumed that all
points in the front face of the disk move in the +z direction
during excitation, and that these points move with a velocity, u,
given by:

u = AS§(t) (la)

As can be seen from studying Eg. (la), the whole disk face
suddenly moves a distance, A, in the z direction at t=0, and then
remains stationary thereafter. (§(t), incidentally, is the Dirac
delta function).
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For the method adopted here, the starting point of the whole
calculation is the determination of the radiation field from a
very small sphere. The radius of the sphere is to suddenly in-
crease by an amount, Ag. The assumption is now made that a very
large number of these small spheres with their centers distri-
buted uniformly over the area of the disk shown in Figure 1 would
approximate the action of a disk whose thickness suddenly in-
creases by the amount, 24, at t=0. One disk face moves in the
+2z direction by an amount, A, and the other in the -z direction
by the same amount. The justification of this assumption forms
the basis for the validity of the whole treatment and will now
be gone into in detail.

The desired expression for the sonic pressure, Py, for the
present disk problem must satisfy only two conditions. The first
is that it be a solution of the differential equatlan usually

referred to as the wave equation (i.e., V2Pg - (1/c®) (32/3t2)
Pgq = 0). The second condition is that Pg satisfy the following
relations in the time interval, 0<t<e(2/C).
Py = C 6(t £ z/c) for y < a (1b)
Pq = 0 for v > a (lc)

C is a constant, a is the disk radius, C is the velocity of sound,
and e is to be chosen so that it is a very small number (typically
having a value around 1/100).

The radiation field from a small sphere has been treated in
several places (ref. 2). (This result is only valid if the radius,
r,, of the small sphere is such that Ag<rg<<cr where T, 1s the
duration of the excitation pulse.) This condition can be satis-
fied in most practical cases. The result for the sonic pressure,
Pg, as a function of space and time is:

uA S

_ S d
PS(}'_,t) = It &t [5(1‘— - r/C)] (14d)

where u is the density of the fluid, and S is the surface area of
the sphere.

Since the sonic pressure, Pg, for a single small sphere is a
solution to the wave equation everywhere except on the disk, the
total sonic pressure from a large array of these spheres will be
such a solution also, because it is merely the linear super-posi-
tion of a large number of the functions, Pg, (and the wave equa-
tion is a linear differential equation). Thus, the total array
pressure satisfies the first condition mentioned above. It



satisfies the second condition also, but this cannot become
apparent until the total array pressure is calculated. The cal-
culation has actually been performed in the treatment that follows.
By temporarily skipping ahead, it can be verified that the total
array pressure (to be labeled Pp) satisfied the boundary condi-
tions at times near t=0. Thus, it can be seen that the Pp, as
determined from Egs. (9b) and (19) show that it agrees with Eq.
(lc). Thus, since Pp satisfies the two conditions of acceptance
given above, it follows that Pp = Py, the desired solution.

From the description of the method of calculation given
above, it would appear that the sonic pressure, P, generated by
the action of the disk can be given by the following expression:

a 2m
P (r,t) = (q/S)f/ Po(x,t;0,0) pdbdp (2)
o “o
2 2.1/2 .
where p = [x" + vy / ; tan ¢ = (x/y); and g is a source strength

constant to be determined.

In evaluating the integral of Eg. (2), the ¢ integration is
to be performed first. The result of the ¢ integration is dpp
which is the pressure wave that would result if only a ring of
radius, p, and width, dp, were excited. Using Egs. (2) and
(1d), the explicit form of dpp is:

27
quAs> 4 @
dpy = (=) toao) S / (d6/x)6 (£ = /c) (3)
o
L
where r =[%2 + y2 + p2 - 2yp cos ¢]l/2
The evaluation of Eg. (3) involves using the properties of

a Dirac delta function. It can thus be seen that dpp#0 only for
those values of t where t = r/c. Moreover, since only r appears

explicitly in the argument of the delta function and the variable
of integration is ¢, a factor of c|dr/d¢|-1 must appear. The
result of the ¢ integration of Eqg. (3) is then:

~

dPD = 0 for t<t and t>T (4a)

Mbgpdp) 4 -
Py = ~\"@r Jat (r dr7d£T>¢=¢ (4b)
t



~ 2 2 2 i = 2 2 2
where 2 =Vz2 + y2 + 02 + 290 T V2% 4 y% + 0% - 2yp

and c¢t £v22 + y2 + p2 - 2yp cos ¢t

Note that there are two values of ¢ that can satisfy the ¢t
equation. From Egs. (3) and (4b) it follows that:

d . 1
|ra%|¢ I N 7 Vap?y? - (0% - 0?2 (5)
t

where D2 = c2t2 - 22 - y2

Let n be defined so that:

c2t2 = 22 + y2 + p2 - 2pyn (6)

It then follows from Egs. (4b) and (5) that:

- (q__d_) a_ 1 -
D 2m dt — >
20y\/l -

It is to be noted that there is aﬂ extra factor of 2 in
Eg. (7) to account for the fact that there are two values of ¢
satisfying the ¢+ equation. n is a function of t only with
n=-1when £t = 7; n=1when t - 1 and - 1<n<l when T<t<r.
Equation (7), therefore, provides a more suggestive form for dPD.

Finally, it is of interest to note that:

~

1

dt N I | dn (8)
.[201/\/1—172 20V22+y2+p2£Vl—KnVl—n2

~

where k = 2py/ <22 + y2 + p2>

With the use of Egs. (7) and (8) it is possible to see_that
for large distances from the ring (i.e., where z2 + y2 >> 02) the
time and space dependence of dPp begins to resemble that of Eq.
(1d) , the pressure wave from a small sphere. This is what is to
be expected and therefore provides an accuracy check on the
calculations.




The radiation pressure, Pp, for the total disk can now be
obtained by integrating the result for the ring (i.e. dPp given
by Egs. (4a), (4b) and (5)) with respect to the variable, p. When
this is done, the result can be presented in the form:

Py = 0 when t>t and t<t (9a)
qcul P
p = syd pdp S
D T Jdt [ \/4p2y2 _ D2 4 o2
for t < t < ¢ (9k)

The limits of integration, p and B will in general depend on t as
well as y. The exact determination of these limits is rather
complicated and, therefore, must be deferred until later. The
times, t and t, are also to be determined.

It is possible to perform the p integration in Eg. (9b) by
changing variables from p to ¢ so that o = D4 - p4. If the
quantity in the square bracket in Eg. (9b) is designated as I,
then it can be shown that after substituting ¢ for p, I has the

form:

I = %v/r do (10)
2 _ 82 \/4y2D2 - 4y2 o - o2

The integral of Eg. (10) can be evaluated exactly and the result
is:

1 D2 + 2y2 - p2
I = 5 arc sin ~
2y'Vbz + y2
(11)
. D2 + 2Y2 - 62
- arc sin

2y V%z + y2

There now remains the task of evaluating the limits, p and 5.
It can be seen that in doing this, two distinct cases natufally
arise. Case I is where y lies in the range, 0<y<a, and Case II
is where y>a. Case I 1s to be considered first and this can best
be done by referring to Figure 2. This is seen as a representa-
tion on the XY plane of the measurement point, M, and the disk
trace (shown by the cross-hatched bar). There is also a repre-



sentation of the disk on the YZ plane. Upon studying this figure,
it is apparent that the point on the disk closest to the point, M,
is the point, L, which is the intersection of the line, LM, with
the surface of the disk. The line, LM, lies in the XY plane and
is parallel to the x axis. It is obvious that the minimum time,
t, in the pulse is determined by the product of (1/c) and the line
length, LM. Similarly, it can be seen that the point on the disk
having the greatest distance to M is N, the point at the bottom
of the disk. Thus, the maximum pulse time, t, is (1/c) times the
length, MN. From the above considerations it follows that:

t = z/c (12a)

v

t= (/) V22 + (v + a)2 (12b)

It can also be seen from a study of Figure 2 that for any
given t (in the range t to t), the locus of all points on the
surface of the disk having a distance, ct, to the point, M, is a
circle whose center is at the point, (0,y,0) and which has a
radius &, given by

c2t2 - 22

It follows from this that the minimum radius, p, of any ring con-
tributing to the integral of Eg. (9b) is determined by the short-
est distance from the origin to any point on the locus circle.
Similarly, the maximum radius, p, is determined by the greatest
distance of any point on the locus circle to the origin.

From these considerations and a study of Figure 2, it can be
shown that p and p are given by:

b=y +¢& for £ < a -y (13a)
p = a for £ > a -y (13b)
p=y - g for £ < y (14a)
p = £ -y for £ > vy (14Db)
2

p- = D2 + 2y2 - 2y VDz + y2 for all & (14c)

V€2t2 - 22 = Vbz + y2

1

where g

Using the results of Eg. sets (13) and (14) in Eq. (11), the
final result for I when y<a is:



I =7/2 for t < £t < € (15a)

2 2 2
1 =10 L arcsin|P*2y -a (15b)
4 2 S5 —
2y Vb + vy
where t = (1/c) VQZ + (a - y)2 for t < t < £

For Case II where y>a, it is possible to determine p and p
in the same manner that they were determined in Case I. YThe main
difference is that instead of using Figure 2 to determine the
various geometric relations, Figure 3 must now be used. Just as
in Case I, the length, MN, represents the longest distance between
any disk point and the point, M. However, for Case II, QN repre-
sents the shortest distance instead of LM. From an analysis of
Case II similar to the one already performed for Case I, it is
possible to show that the following relations are valid:

t = (l/C)‘\/z2 + (y - a)2 (16a)
£ = (1/c) V22 + (v + a)? (16b)
p =y - & for £ <y (17a)
p =& -y for £ > y (17b)
02 = p2 + 2y% - 2y Vy? + D2 for all £ (17¢)
where £ = D2 + y2
6 = a for t < t < t (18)

Using the results of Eg. sets (17) and (18) to obtain p and p,
the value of the quantity, I, of Eg. (l11) can be seen to be (for ~

y>a):

2 2 2
D™ + 2y~ - a” (19)

2y VDZ + y2

for t < t < t

arc sin

'SE!
{
N

With the derivation of Eq. sets (15) and (19), the quantity,
I, has been completely determined and, therefore, with the use of
Eg. set (9), the form of the pressure, Pp, can be derived. To
completely determine PD’ however, it is necessary to find the
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Figure 4.- Plot of I vs t for Cases I and II



value of the source strength constant, gq. To do this and also to
provide a check for some of the calculations presented above, a
simple special case of the sonic radiation field is now to be
treated. This case is where y = 0 (i.e. M lies on the X axis).
Here it is obvious that

t = z/c and £ = % z° + a“ .

Moreover it follows that:

vA.g a
P, = 2m [_4;?_} . / (@) § (£ - r/c) (20)

0

If the variable of integration is changed from p to r, and
the relation pdp = rdr is used, Eq. (20) becomes transformed to:

sz + a2

PD = 2T -—-4—-7?-* d‘—t' /dr 6(t - r/c) (21)

X
for t < t < %

The integration indicated in Egqg. (21) can be readily per-
formed and it produces a pair of step funtions. These become
delta functions again when differentiated with respect to t so
that the final result for Pp is:

P, = ﬂl/Z)qcuAé} §(t - z/c) - 6< - (1/¢) 2% 4 a2> (22)

for t < t < E

The result of Eq. (22) is now to be subjected to two quali-
tative checks. It is to be expected that when a*«, the form of P
approximates that where the piston is an infinite plane with all
the surface points moving with the velocity defined by Eq. (la).
The solution for this can readily be obtained and is found to have

D

the form of the delta function, §(t - z/¢). It can be seen that
as a»», the form of Pp does indeed approach the required form of
§(t - z/c), since the second term in Eqg. (22) appears only after

a very long time. Thus, Eg. (22) is able to pass the first check.

As a second check it is to be expected that when z»x, Pp
approaches the form obtained from a pulsating spherical monopole
as given by Eg. (1d). It is to be noted, first, that
[6 (utA) -8 (u)=Ad/du[d(u)]] when A<<u. Thus it follows from

10



Egq. (22) when z>>a:

1 a2 d z
Pp = |2%4sfl2z|aE |® * " ¢ (23)

Since, in this case z=r, it can be seen that Eq. (23) agrees in
form with Eq. (1d) and, thus Eg. (22) is able to pass the second
check also.

In order to determine ¢, the source strength constant, the
same boundry conditions used for the small sphere (ref. 2) can
be invoked here. These are that on the surface of the piston the
relation, uw duy/dt = -dP,/dz, is valid. Using Eq. (la) to give
u, and Eg. (22) to give Pp, it follows that the boundry condi-
tions require that the various parameters be related as follows:

1
b=3alb (24)

S

Since the general expression for Pp given by Eqg. (9b) involves
the entire quantity, (glg). the source strength constant, g, is,
in effect, determined by Eg. (24).

It is of interest to note that the form of Pp given by
Eg. (22) agrees with the Pp given in the main text (from Egs.
(9b), (1l5a), and (15b)) when y = 0. It can be shown that for
these forms to agree, I in Eq, set (15) must be a function such
that I =0 for t < t and t > t; I = /2 for £ > t > t. This con-
dition is satisfied by Eg. set (15) since it_reagilyvfollows from
Eg. (12b) and Eq. set (15) that when y = 0, t = t. Thus, Eq. (22)
is able to pass the final check.

The final task of the treatment is to present the quantity,
dIi/dt, in explicit form. Doing this requires a straight-forward
but rather tedious differentiation of the quantity, I. Without
presenting any of the calculational details, the final result is
given by the following equations:

%£ =0 for t > £ and t < t (25a)
t v

d
ar _1 [Ca& ¢ -9 (25b)
dt ~ 2 >

‘Vl - (G - J)

for t < t < £

11



where:

czt2 - 22 + y2 dG _ czt[czt2 - 22 - y%

G = -
2yVe?e? - 22 2y <c2t2 2 ) 3/2
Case I; y < a.
a? - A
J = for t < t < t (26a)
——
2y'Vc2t - 22
2 2 N
%% = act for T < t < t (26b)
5 <czt2 22> 3/2
Case II; y > a.
a2
J = — (27a)
2y c2t2 - 22
. 2 2
dj -a ¢ t
ac (27b)

2y<¢2t2 _ z2)3/2

With the derivation of the quantity, dI/dt, the sonic radia-
tion field has now been completely determined. The character of
the field can probably be best obtained by substituting in the
pertinent equations above to get a plot of I versus t for differ-
ent values of x and z. This operation has been carried out, and
the results are given below. However, it is felt to be more
instructive to first obtain a rough qualitative description of
the sonic field from the study of the pertinent equations.

Before proceeding with the description, it is necessary that,
as an aid to the discussion, a rough general plot of I versus t
for both Cases I and II be made. This is done in Figure 4. It
can be seen from this figure that it is not necessary to calculate
dI/dt for the time interval, t < t < t, in Case I, since it always
has the same form in this intérval.

From Eg. (22) it can be seen that when y = 0, Pp is in the
form of two delta functions desplaced in time with respect to one
another. This is to say that when the piston is excited by a
very sharp time pulse, the pressure waves it generates on the x
axis will also be sharp pulses. Off the x axis but for y < a,

12



the Pp versus t plot remains two pulses displaced in time and the
leading pulse stays sharp (i.e. it is a delta function). The
lagging pulse, however, gets spread out (to a pulse duration of
around a/c). This result is perhaps the most important one in
the whole treatment since it accounts for the fact that sharp
pulse excitations can produce sharp sonic pulses over extended

regions,

When the measuring point, M, is far off the x axis (where
y > a) it is found that both the leading and lagging pulse is
spread out with pulse durations of the order of ac. Moreover,
as y becomes larger, the amplitude of the pulse (as well as that
of the quantity, I) decreases in value.

As mentioned above, the derivation obtained here has been
used to prepare plots of I versus t and (dI/dt) versus t for
various spatial points. Figures 5, 6, and 7 give I versus t and
Figures 8, 9, 10, 11, and 12 give (dI/dt) versus t. These curves
are self explanitory. Figure 12 essentially gives a picture of
the "wave front" at the instant of time, t = (4.0) (a/c). The
vertical arrows in the above figures indicate Dirac delta
functions.

Z/a=2.0
Y/a=0,0.1;0.2,0.5, 07,10

(ca)t—=

Figure 5.- I vs t
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